2 DAYS SHORT COURSE : DESIGN AND SIMULATION OF GRID CONNECTED PHOTOVOLTAIC (GCPV) SYSTEM USING PVSYST

Duration: 2 days Method of teaching: Face to Face Trainer: Dr. Ahmad Maliki Omar

Synopsis: The "Design and Simulation of Grid-Connected Photovoltaic (GCPV) Systems using PVsyst" is a comprehensive 2-days short course that aims to equip participants with the essential knowledge and practical skills to design and simulate solar photovoltaic (PV) systems for grid connection using the industry-leading software, PVsyst. This course is ideal for engineers, solar energy enthusiasts, and professionals seeking to enhance their expertise in solar PV system design and performance analysis.

Contents:

1. Introduction to grid-connected photovoltaic (GCPV) system

- Types of GCPV system
 - Microinverter System
 - DC Optimiser system
 - String and central inverter
 - Single-phase inverter
 - Three-phase inverter
 - Multiple MPPTs
 - Transformerless and transformer-based inverter
 - Types of connection
 - LV connection single line diagram
 - MV connection single line diagram
 - HV connection single line diagram
- Types of GCPV scheme
 - Fit
 - NEM and SelCo
 - LSS
- Advantages and disadvantages of NEM

2. Design concept of GCPV system

- DC/AC ratio or overload ratio
- Safety of inverter
- Optimum operating conditions
- Power clipping
- 3. Introduction to PVsyst
 - Simulation flow
- 4. Siting and Meteo Definitions
 - PVsyst components library

• Create a new site with meteorological data

5. Tilt angle and Azimuth

- Set mounting type, tilt angle and Azimuth angle
- Albedo light reflection from the ground
- Effect of tilt and Azimuth angle

6. Electrical system

- PV modules; PVsyst components library and new modules
- Inverters; PVsyst components library and new inverter
- Cables; Declare DC and AC cable loss

7. Sizing PV-Inverter

- Sizing using a single MPPT inverter
- Sizing using multiple MPPT inverters
- Sizing using many inverters LSS plant
- Method of inverter selection based on PV array capacity
- Optimum sizing condition; voltage, current and power requirements
- Method of finding optimum PV array configuration; Np and Ns

8. Shading

- Far shading method of input data from Solarpath finder chart
- Near shading 3D drawing and Shading simulation
- Polar and rectangular plots

9. Other losses

- Thermal
- Ageing
- DC and AC cables
- Unavailability
- Dirt
- Incidence Angle Modifier
- Light-Induced Degradation
- Mismatch
- Auxiliary devices

10. Self-consumption

- Household daily
- Power factor adjustment and reason
- Grid power limitation and reason
- 11. Simulation and reporting
 - Explanation on the report format

Requirements: -

- Each participant shall have his/her own PVsyst software V7.0 or the latest installed.
- Each participant shall bring his/her own laptop during the course.

Relevance

- Engineer / Competent Person / Qualified Person
- Technician / Chargeman / Wireman /Installer
- Contractor / Service Provider
- Project Manager / Regulator
- Academia / Researchers

Venue

TBD

Fee

MYR1500

Contact

Ts. Dr. Siti Zaliha Binti Mohammad Noor Head Training and Continuing Education Unit Solar Research Institute (SRI) Universiti Teknologi MARA, 40450 Shah Alam, Selangor Phone (O) : +603-55436125 Phone (H/P) : +6017-6663457 Email address : <u>sitizaliha@uitm.edu.my</u>

End of Document